
A short review of 'DGP spectroscopy'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 6827

(http://iopscience.iop.org/1751-8121/40/25/S26)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/25
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 6827–6833 doi:10.1088/1751-8113/40/25/S26

A short review of ‘DGP spectroscopy’

Antonio Padilla

School of Physics and Astronomy, University Park, University of Nottingham,
Nottingham NG7 2RD, UK

E-mail: antonio.padilla@nottingham.ac.uk

Received 9 October 2006
Published 6 June 2007
Online at stacks.iop.org/JPhysA/40/6827

Abstract
In this paper we provide a short review of the main results developed in
Charmousis et al (2006 Preprint hep-th/0604086). We focus on linearized
vacuum perturbations about the self-accelerating branch of solutions in the
DGP model. These are shown to contain a ghost in the spectrum for any
value of the brane tension. We also comment on Deffayet et al (2006 Preprint
hep-th/0607099), where some counter arguments have been presented.

PACS number: 11.25.−w

Recent observations of high redshift supernovae suggest that dark energy accounts for roughly
70% of the energy content of our universe [1]. This dark energy is consistent with a small
positive cosmological constant, � ∼ 10−12 (eV)4, exerting negative pressure on the universe,
causing its expansion to accelerate. If we wish to resort to effective field theory methods
to explain the origin of the cosmological constant, we typically run into an horrendous fine
tuning problem. For a field theory cut off at the Planck scale, mpl, the natural value of the
cosmological constant would be of the order m4

pl, which is 10120 orders of magnitude larger
than the observed value.

This problem has inspired a search for alternative explanations of the current cosmic
acceleration. One possibility is that it is due to new gravitational physics kicking in at the
current Hubble scale, H ∼ 10−34 eV (see, for example, [2]). In this paper we will focus
on the DGP model [3], which has arguably received more attention than any other model in
which gravity is modified on ultra large scales. The model consists of a Z2 symmetric 3-brane
embedded in 5D Minkowski space, described by the following action:

S = 2M3
5

∫
bulk

√−gR + 4M3
5

∫
brane

√−γK +
∫

brane

√−γ
(
M2

4R − σ + Lmatter
)
, (1)

where gab is the bulk metric with corresponding Ricci tensor Rab. The brane has induced
metric γµν with corresponding Ricci tensor Rµν , and extrinsic curvature Kµν . The key feature
here is the intrinsic curvature induced on the brane by matter loop corrections [4], or finite
width effects [5]. Note that we have included an explicit brane tension σ , and additional matter
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Lagrangian, Lmatter. The governing equations of motion in the bulk are simply the vacuum
Einstein equations

Gab = Rab − 1
2Rgab = 0, (2)

whereas the boundary conditions at the brane are given by the Israel junction conditions

�µν = 2M3
5 (Kµν − Kγµν) + M2

4

(
Rµν − 1

2
Rγµν

)
+

σ

2
γµν = Tµν, (3)

where Tµν = − 2√−γ

∂(
√−γLmatter)

∂γ µν . In the absence of any additional matter, we can set Tµν = 0,
and derive the following background spacetimes:

ds2 = ḡab dxa dxb = e2εH |y|(dy2 + γ̄µν dxµ dxν), (4)

where ε = ±1, and

γ̄µν dxµ dxν = −dt2 + e2Ht d�x2. (5)

The bulk spacetime corresponds to −∞ < y < 0 and 0 < y < ∞, with a de Sitter brane
positioned at y = 0. The brane can be thought of as a 4D hyperboloid embedded in a 5D
Minkowski bulk. The sign of ε determines whether the bulk spacetime corresponds to two
copies of the exterior of the hyperboloid (ε = +1), or two copies of the interior (ε = −1).
The solution with ε = −1 is commonly referred to as the normal branch whereas the solution
with ε = +1 is referred to as the self-accelerating branch, a terminology which will become
transparent shortly. Note that the metric in (5) represents the 4D de Sitter geometry in spatially
flat coordinates, which covers only one half of the de Sitter hyperboloid.

The value of the intrinsic curvature on the brane can be related to the brane tension using
the Israel equations (3). It turns out that

H = 1

2
H0

(
ε +

√
1 +

σ

3M3
5 H0

)
, (6)

where H0 = 2M3
5

/
M2

4 is taken to be the current Hubble scale. Note that even for vanishing
tension, the self-accelerating solution gives rise to a de Sitter brane universe with H = H0. The
modification of gravity at large distances has enabled us to describe an accelerating universe
in the absence of any vacuum energy whatsoever! In contrast, the normal branch gives rise to
a Minkowski brane as σ → 0, and is of less interest phenomenologically.

In ‘DGP spectroscopy’ [6], we discussed the stability of linearized perturbations about
the background solution (4). On the normal branch, these perturbations are well behaved. In
contrast, on the self-accelerating branch, one is generically haunted by ghosts. In this paper, we
will review the discussion of linearized perturbations about the self-accelerating solution. For
brevity, we will restrict attention to Z2 symmetric fluctuations about the vacuum (Tµν = 0).
A more complete discussion including asymmetric fluctuations and the contribution from
additional matter (Tµν �= 0) can be found in [6].

Recall that the self-accelerating background solution is given by the metric (4) with
ε = +1 and the brane positioned at y = 0. A generic perturbation can be described by
gab = ḡab + δgab with the brane position shifted to y = F(x). It is convenient to work in a
Gaussian normal (GN) gauge so that

δgyy = δgµy = 0, δgµν = eH |y|/2hµν(x, y). (7)

The tensor hµν can be decomposed in terms of the irreducible representations of the 4D de
Sitter diffeomorphism group

hµν = hTT
µν + DµAν + DνAµ + DµDνφ − 1

4
γ̄µνD

2φ +
h

4
γ̄µν, (8)
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where Dµ is the covariant derivative for the 4D de Sitter metric γ̄µν . The transverse-tracefree
tensor hTT

µν satisfies DµhTT
µν = hTTµ

µ = 0, and has five independent components. Aµ is a
Lorentz-gauge vector, DµAµ = 0, with three independent components, and φ and h = hµ

µ

are two scalar fields1.
We can fix the position of the brane to be at y = 0, whilst remaining in GN gauge, by

making the following gauge transformation:

y → y − F e−H |y|, xµ → xµ − e−H |y|

H
DµF. (9)

Although the brane position is now fixed at y = 0, the original brane position F(x) still enters
the dynamics through a book-keeping term h(F)

µν that modifies the metric perturbation

hµν → hTT
µν + DµAν + DνAµ + DµDνφ − 1

4
γ̄µνD

2φ +
h

4
γ̄µν + h(F)

µν . (10)

The book-keeping term is of course pure gauge in the bulk, and is given by

h(F)
µν = 2

H
eH |y|/2(DµDν + H 2γ̄µν)F. (11)

We can now substitute our modified expression for hµν into the linearized fields equations in
the bulk, δGab = 0, and on the brane, δ�µν = 0. It turns out that the Lorentz-gauge vector
Aµ is a free field in the linearized theory and can be set to zero. In addition, the yy and yµ

equations in the bulk imply that one can consistently choose a gauge for which

h = 0, (D2 + 4H 2)φ = 0. (12)

Note that we now have hµν = hTT
µν + h(φ)

µν + h(F)
µν , where the contribution from φ(x, y) has been

rewritten as follows:

h(φ)
µν = (DµDν + H 2γ̄µν)φ(x, y). (13)

This mode is now entirely transverse tracefree in its own right. In the absence of any additional
matter on the brane (Tµν = 0), the same is true of the bookkeeping mode, h(F)

µν . This is because
the trace of the Israel equation now implies that

(D2 + 4H 2)F = 0. (14)

The entire perturbation hµν(x, y) is now completely transverse tracefree. This greatly
simplifies the bulk and brane equations of motion, giving[

D2 − 2H 2 + ∂2
y − 9H 2

4

]
hµν(x, y) = 0 for |y| > 0 (15)

[
M2

4 (D2 − 2H 2) + 2M3
5

(
∂y − 3H

2

)]
hµν = 0 at y = 0+. (16)

We now separate variables in the tensor and scalar fields as follows:

hTT
µν(x, y) =

∑
m

um(y)χ(m)
µν (x), φ(x, y) = W(y)φ̂(x), (17)

where χ(m)
µν is 4D tensor field of mass m satisfying (D2 − 2H 2)χ(m)

µν = m2χ(m)
µν . Note that φ̂ is

a 4D tachyonic field satisfying (D2 + 4H 2)φ̂ = 0. This is a mild instability which is related
to the repulsive nature of inflating domain walls.

We shall now focus on the case where the brane tension is non-vanishing (σ �= 0).
Assuming that the tensor and scalar equations of motion can be treated independently, we find

1 Note that the total number of independent components correctly adds up 10.
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that there is a continuum of normalizable tensor modes with mass m2 � 9H 2/4. In addition,
there is also a discrete tensor mode with mass

m2
d = H0(3H − H0) (18)

and normalizable wavefunction umd
(y) = αmd

e−|y|
√

9H2
4 −m2

d . Now, for positive brane tension
σ > 0, one can easily check that 0 < m2

d < 2H 2. For massive gravitons propagating in 4D
de Sitter, it is well known that masses lying in this range result in the graviton containing a
helicity-0 ghost [7]. This means that for σ > 0, the lightest tensor mode contains a helicity-0
ghost, and so the system is perturbatively unstable. For negative brane tension, m2

d > 2H 2

and there is no helicity-0 ghost in the lightest tensor.
Now consider the scalar equations of motion. The first thing to note is that h(φ)

µν behaves
like a transverse-tracefree mode with mass m2

φ = 2H 2, because (D2 − 2H 2)h(φ)
µν = 2H 2h(φ)

µν .
Since none of the tensor modes have this mass, they are all orthogonal to h(φ)

µν . This means it
was consistent to assume that the scalar and tensor equations of motion could indeed be treated
independently. It turns out that the scalar has a normalizable wavefunction W(y) = e−H |y|/2,
and the 4D scalar φ̂ is sourced by F via the relation

φ̂(x) = αF(x), α = −
[

2H − H0

H(H − H0)

]
(19)

This is well defined for σ �= 0 since then H �= H0. h(φ)
µν (x, y) may now be thought of as a

genuine radion mode, measuring the physical motion of the brane with respect to infinity. It
does not decouple even though we only have a single brane. This property is related to the
fact that the background warp factor, e2H |y|, grows as we move deeper into the bulk.

We have already identified the helicity-0 mode of the lightest tensor as a ghost when
σ > 0. When σ < 0, a calculation of the 4D effective action will reveal the ghost to be the
radion. Taking our solution

hµν(x, y) = αmd
e−|y|

√
9H2

4 −m2
d χ(md)

µν (x) + α e−H |y|/2(DµDν + H 2γ̄µν)F

+
2

H
eH |y|/2(DµDν + H 2γ̄µν)F + continuum modes (20)

and inserting it into action (1), we can integrate out the extra dimension. This is made possible
by restricting attention to normalizable modes. The result is Seff = ∫

d4x
√−γ̄Leff , where

Leff = LPF[χ(md)] − m2
d

4
χ(md)µν

(
χ(md)

µν − χ(md)γ̄µν

) − 3M3
5 H 2αF(D2 + 4H 2)F + · · · (21)

LPF is the standard Pauli–Fierz Lagrangian and ‘· · ·’ denotes the contribution from the
continuum of tensor modes. When σ < 0, it turns out that α > 0, and so we confirm
that negative brane tension gives rise to a radion ghost.

Given that there is always a ghost for non-zero tension, one might expect by continuity
that this remains the case when σ = 0. To study this more closely, let us first ask whether
we can trust the above solutions in the limit where σ → 0. In this limit H → H0, and the
quantity α becomes ill defined! To understand what has gone wrong, note that the mass of the
lightest tensor m2

d → 2H 2. This means that it is no longer orthogonal to the radion, h(φ)
µν , and

so we cannot treat the tensor and scalar equations of motion independently. This behaviour
can be traced back to an additional symmetry that appears in the linearized theory in the limit
of vanishing brane tension. It is analogous to the ‘partially massless limit’ in the theory of a
massive graviton propagating in de Sitter space [7]. In that theory, the equations of motion
are invariant under the following redefinition of the graviton field:

χ(
√

2H)
µν (x) → χ(

√
2H)

µν (x) + (DµDν + H 2γ̄µν)ψ(x). (22)
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This field redefinition has the effect of extracting out part of the helicity-0 mode from χ(
√

2H)
µν ,

and as a result of the symmetry this mode disappears from the spectrum. In our case, this shift
must be accompanied by a shift in the scalar field φ,

φ(x, y) → φ(x, y) − α√
2H e−H |y|/2ψ(x) = φ(x, y) − lim

σ→0
αmd

e−|y|
√

9H2
4 −m2

d ψ(x) (23)

in order to render the overall perturbation, hµν(x, y), invariant. These ψ shifts can be

understood as the extracting part of the helicity-0 mode from χ(
√

2H)
µν and absorbing it into a

renormalization of φ. The symmetry will have the effect of combining the helicity-0 mode
and the radion into a single degree of freedom. It is only after fixing this ψ symmetry that we
can treat the scalar and tensor equations of motion independently of one another. We might
think of extracting the entire helicity-0 mode and absorbing it into φ, or vice versa. Actually,
it will be convenient to make a different gauge choice that enables us to take a smooth limit
as σ → 0 [8]. We start off with the solution for σ �= 0 given by equation (20), and make the
field redefinition

χ(md)
µν → Hµν = χ(md)

µν + (DµDν + H 2γµν)

[
α

αmd

F

]
. (24)

In the limit as σ → 0, this has the effect of extracting out part of the helicity-0 mode of χ(md)
µν

and absorbing it into a renormalization of φ:

φ(x, y) → lim
σ→0

e−H |y|/2αF − αmd
e−|y|

√
9H2

4 −m2
d

[
α

αmd

F

]
= −|y| e−H |y|/2F. (25)

It follows that for vanishing tension

hµν(x, y) = e−H |y|/2[α√
2HHµν − |y|(DµDν + H 2γ̄µν)F ]

+
2

H
eH |y|/2(DµDν + H 2γ̄µν)F + continuum modes, (26)

where the 4D tensor Hµν satisfies

α√
2H (D2 − 4H 2)Hµν = −H(DµDν + H 2γ̄µν)F. (27)

This equation should be understood as the helicity-0 component of Hµν being completely
determined by the source F. A calculation of the 4D effective action in this case, now gives

Leff = LPF [H] − H 2

2
Hµν(Hµν − Hγ̄µν) +

√
2M3

5

M4
Hµν(DµDν + H 2γ̄µν)F + · · · . (28)

A derivation of the Hamiltonian for this action reveals the presence of a scalar degree of
freedom whose energy is unbounded from below [8]. This ghost is a combination of the
radion and helicity-0 mode, and represents the residual scalar degree of freedom left over after
fixing the aforementioned ψ symmetry.

We conclude that for any value of the brane tension, perturbations about the self-
accelerating branch of DGP contain a ghost. We would like to emphasize that this ghost-like
instability is ultimately classical, and one cannot hide behind a UV completion of DGP to
save the day. The ghost couples to matter, and even in the absence of matter we would expect
it to couple to the tensor modes through higher order interactions. Given that its energy is
unbounded from below, the ghost will continually dump its energy into the other fields, rapidly
destroying the self-accelerating solution. We might expect the rate of the instability to go like
the frequency of oscillation of the coupled fields. Given that we have an entire tower of
heavy-tensor modes, this frequency could be very large indeed.

We would like to end our discussion with a few comments on [9], where it has been argued
that the field F in action (28) is nothing more than a Lagrange multiplier and can be consistently
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set to zero. This has the effect of eliminating the scalar ghost from the spectrum. However,
it is important to realize what it really means to set F = 0 in (28), from the point of view
of the full bulk solution. To eliminate F from (28), we need to introduce a non-normalizable
mode in φ(x, y) that cancels off the contribution from the bookkeeping term h(F)

µν . To see how
this works, consider the general bulk solution for φ(x, y), retaining both normalizable and
non-normalizable modes. This is given by

φ(x, y) = e−H |y|/2φ̂(x) + eH |y|/2φ̃(x), (29)

where the last term corresponds to the non-normalizable mode. In our analysis, we invoked the
condition of normalizability to set φ̃(x) = 0, regardless of the value of the brane bending term
F. In order to set F to zero in (28), as suggested in [9], we need to impose the boundary condition
φ̃ = −2F/H . This boundary condition seems to violate a local, causal 4D description on
the brane: if we change F ever so slightly, we need the boundary condition for φ(x, y) as
y → ∞ to respond accordingly! Even if we accept this, there is strong evidence to suggest
that retaining non-normalizable modes in the spectrum leads to further problems with ghosts.
This was discussed in [6] in the context of the gravitational field of a relativistic particle, or
‘shockwave’, on the brane. The non-normalizable modes contribute a repulsive potential on
the brane, which would indicate the presence of ghosts.

It is also argued in [9] that in the presence of a heavy source, linearized perturbation theory
breaks down below a Vainshtein radius rV , and so one cannot make any conclusions as to
whether or not the ghost is really there. Even in the region r � rV where the linearized theory
makes sense, it is not obvious that the linearized solution can always be smoothly continued
inside rV . If this is indeed the case, one cannot use perturbations about the self-accelerating
background (4) to make any reliable cosmological predictions. To proceed, we need to identify
background solutions that take into account localized brane sources. To our knowledge, the
only known exact solution with a localized brane source is the shockwave [10]. It would be
interesting to study perturbation theory about this solution in order to see if the ghost remains.
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